
Tracking 2D pose of mobile phones in real-time

Yashasvi Sriram Patkuri
University of Minnesota - Twin Cities

Minneapolis, MN, USA
patku001@umn.edu

Saurabh Mylavaram
University of Minnesota - Twin Cities

Minneapolis, MN, USA
mylav008@umn.edu

Vinayak Naik
BITS Pilani, India

vinayak@goa.bits-pilani.ac.in

Abstract

Mobile phones are ubiquitous now-a-days, packed with
a variety of sensors and desktop level computing power,
which opens up a lot of new possibilities in human-
computer interaction. In this paper, we try to achieve robust
real-time 2D pose tracking of mobile phones. This allows
mobile phones to be used as a new kind of input tool, for
example for manipulating CAD objects in a more intuitive
way or even as an external mouse to another computer.

1. Introduction
Mobile phones are ubiquitous nowadays. They are

packed with a variety of sensors (viz. camera, IMU, Gy-
roscope etc...) and are recently competing with desktop
hardware in computing performance. This combination of
computing power and sensing technologies opens up a lot of
ventures in Human-Computer Interaction. In this paper, we
propose using mobile phones as a new kind of input tool.
Specifically, we propose ways to use video feed from the
camera to track its 2D pose over time. This has interest-
ing applications viz. using a mobile phone as an external
mouse, as a laser pointer in presentations, for manipulating
objects in CAD software etc...

Our goal in this paper is to track the change in 2D pose
of the mobile device over time robustly in real-time. Our
primary goal is not to perform mapping of the environment
nor to calculate the absolute position of mobile phone with
respect to any world-frame of reference.

2. Related work
The problem of pose tracking is a well-known and

widely studied research problem. [14] provides a good
overview of on image-based camera localization techniques

including PnP problems, Simultaneous localization and
mapping (SLAM), Structure from Motion (SFM). Filter
based SLAM method was first proposed in [4]. [13] showed
that keyframe-based SLAM can give more accurate re-
sults than filter-based SLAM. [7] uses multiple threaded
keyframe-based feature SLAM called Parallel tracking and
mapping (PTAM) on mobile phones to achieve real-time
localization and mapping. This was implemented in an
iPhone 3G where the hardware was much less powerful than
current mobile phones. [9] used inertial unit and a rolling-
shutter camera to track motion in real-time in mobile de-
vices. [11] proposed an optimization-based visual-inertial
camera localization for mobile devices. [5] compares vari-
ous 2D SLAM algorithms using different metrics. [7], [9],
[11] motivate the idea of using vision techniques on mobile
hardware. [6] provides a simple inter-frame rotation esti-
mator under rapid camera movement and keyframe-based
re-localization method.

3. Assumptions
1. The device is constrained to have only translation and

rotation in a 2D space (ex. on a computer desk).

2. We assume a static planar scene at a far enough dis-
tance with a decent number of good features to track
over time.

These assumptions are made primarily by keeping the use
case of mobile phone as an external mouse in mind.

4. Baseline method
In the baseline we additionally assume that the device is

constrained not to have rotations. Let Fi denote ith frame
in the video feed. Let FD, DE, DM represent feature detec-
tor, descriptor extractor and descriptor matcher. Common
examples of FD, DE are SIFT[10], SURF [3], KAZE[1],

1



ORB[12], and BRISK[8] algorithms. Common exam-
ples of DM are FLANNBASED, BRUTEFORCE, BRUTE-
FORCE HAMMING algorithms.

Let FD(Fi) represent key-points in ith frame,
len(FD(Fi)) represent number of key-points in ith
frame, DE(Fi) represent numeric descriptors of key-points
found in ith frame, DM(Fi, Fj , k) be a (len(FD(Fi)) x k)
matrix representing corresponding distances b/w k nearest
neighbour feature points in Fj for each feature point in Fi

in ascending order of distance (i.e. nearest neighbour first).
Then we use algorithm 1 to track the displacement of the
mobile phone.

Algorithm 1: Baseline algorithm

Init Thanchor, Thgoodframe, ThNN ;
Fanchor = first Fi s.t. len(FD(Fi)) > Thanchor;
forall subsequent Fj do

matches = DM(Fanchor, Fj , 2);
gm disps = [];
foreach match in matches do

NN ratio = match[0] / match[1];
if NN ratio < ThNN then

gm disps.append(match);
end

end
if len(gm disps) > Thgoodframe then

emit dispjx = -median(gm dispsx);
emit dispjy = -median(gm dispsy);

end
end

Essentially we set an anchor frame that has more than
a threshold number of key-points. Then for every subse-
quent frame we detect key-points and match with the an-
chor frame. This way every key-point in the anchor frame
has a correspondence with a key-point in jth frame. We filter
out bad matches using a nearest neighbour ratio test. If the
number of good matches exceed a certain number we cal-
culate displacement of each key-point from anchor frame to
jth frame. The magnitude of total displacement of camera
is taken as the median of displacements of all key-points.
Thanchor, Thgoodframe, ThNN are tuning parameters here.

Specifically, we used the video feed from the front cam-
era of a One Plus 7 mobile phone, AKAZE feature detector
and descriptor extractor, BRUTEFORCE HAMMING de-
scriptor matcher, Thanchor = 20, Thgoodframe = 10, ThNN

= 0.7 in this implementation.
The tracking was real-time with almost no lag. An eval-

uation of the implementation is conducted. Figure 1 illus-
trates a straight line movement. Figure 2 illustrates the re-
sult of tracking when mobile is moved in a square fashion.
Figure 3 illustrates circular movement. Figure 4 illustrates

random closed loop movement.

Figure 1. Straight line

Figure 2. Square movement

Figure 3. Circular movement

Figure 4. Random closed loop movement

2



5. Proposed method
While the preliminary work does a decent job, it stills

does not handle rotations of the device. The proposed
method tries to address this. By the assumptions stated in
section 3 the transformation between the key-points in the
first frame and key-points in the Nth frame can be approx-
imated as a euclidean transform. By estimating this trans-
form we can decompose it into the translation and rotations
transforms. As the scene the camera sees is assumed to be
static the rotation and translation correspond to the camera
movement albeit in an opposite sense. [2] describes a sim-
ple method for this that can be executed on a mobile hard-
ware in real-time. If we consider A as the set of key-points
in first frame and B in the Nth frame we have the following
relation between them, where R is the rotation transform
and t is the translation transform.

R ∗A+ t = B

The proposed algorithm is as described in algorithm 2
which builds on algorithm 1.

6. Results
We compare the results of baseline method and proposed

method here. First we test for the translation part and then
rotation part. Finally we provide paths traced out by both
methods in different scenarios.

6.1. Quantitative analysis

Since the metric space and pixel space have different
scales, we cannot directly compare the ground truth transla-
tion and pixel translation. Therefore we compare the ratios
of readings given after displacement of 15cm and 30cm in
metric space. The mobile is displaced both along X and Y
axes by these distances. The readings and ratios measured
are recorded in the table 6.1.

We can see that the pixel space and metric space are lin-
early related and shall have a one-to-one mapping transfor-
mation. Translation computed by both methods is almost
similar because in theses cases the proposed method boils
down to the baseline method. The effectiveness of proposed
method comes into play once there is a complex translation
and rotation motions involved as we shall see later.

Since the baseline method does not estimate rotation the
only comparison we can do is between ground truth and
proposed method. The device from the start position is
rotated by different angles (marked properly on table it is
place) and the rotation reading is recorded. For each angle
this is done five times and mean and standard deviation of
these five trails are calculated. The results are shows in table
6.1 and visualized in figure 5.

We can observe that at angles multiples of 45◦ we
have relatively more accurate measurements, where as there

Algorithm 2: Proposed algorithm

Init Thanchor, Thgoodframe, ThNN ;
Fanchor = first Fi s.t. len(FD(Fi)) > Thanchor;
forall subsequent Fj do

matches = DM(Fanchor, Fj , 2);
A = [];
B = [];
foreach match in matches do

NN ratio = match[0] / match[1];
if NN ratio < ThNN then

A.append(match.firstframe);
B.append(match.Nthframe);

end
end
if len(B) > Thgoodframe then

Arecentered = A− centroid(A);
Brecentered = B − centroid(B);
/* H is a 2x2 covariance matrix */
H = Arecentered ∗Brecentered;
/* SVD = singular value decomposition */
U, S, V = SV D(H);
R = UT ∗ V ;
t = B −R ∗A;
/* Correcting for device movement */
R = RT ;
t = tT ;
emit R;
emit t;

end
end

Ground truth Baseline Proposed
15cm X-axis 27 27
30cm X-axis 54 54
15cm Y-axis 26 26
30cm Y-axis 53 52

30cm/15cm X-axis 2 2
30cm/15cm Y-axis 2.04 2

Table 1. Translation measurements

seems to be a negative error in 0◦−45◦ range and a positive
error in 45◦ − 90◦.

Some of the important features of the results of the pro-
posed method are listed below

1. When the device is at rest there is translation and rota-
tion readings stay at zero i.e. there is no drift at rest.

2. When the device is suddenly taken away from the ta-
ble and placed back in the same pose later the tracking
resumes from that point i.e. there is a good jerk recov-

3



Ground T1 T2 T3 T4 T5 Mean STD Error
30 deg 27 28 29 29 28 28.2 0.84 -1.8
45 deg 45 46 46 45 44 45.2 0.84 0.2
60 deg 62 64 63 64 64 63.4 0.90 3.4
90 deg 91 92 89 90 89 90.2 1.30 0.2
180 deg 178 180 180 179 180 179.4 0.90 -0.6

Table 2. Rotation measurements

Figure 5. Rotation measurements

ery.

3. The speed at which device moves has no effect on
tracking as change in pose is only a function of first
frame and Nth frame.

4. The above point also means that there will be no drift
accumulation during the movements.

6.2. Qualitative analysis

To compare both baseline and proposed methods in a
more practical point of view we plot the paths traced by
them simultaneously when the device is moved along dif-
ferent paths. Figure 6 shows these paths when device was
moved in a line, square, circle, spiral, star fashion respec-
tively. The green path is drawn by baseline method and the
white path is drawn by proposed method. The last image in
figure 6 show the letter CV written. Note that in all scenar-
ios in figure 6 the device was never rotated. Therefore we
get very correlated paths for both methods.

In figure 7 the device was rotated in a full rotation, along
a small arc and finally moved forward and then rotated in a
full circle. The rotations are made along axes perpendicular
to the plane on which device was placed.

In these images we can see that baseline method and pro-
posed method produce significantly different paths. Partic-
ularly in the first image in figure 7 we can see that proposed
method (white) produces a good circle while the baseline
method (green) produces a curve that shoots out arbitrarily.
This emphasizes the role of rotation in these cases.

As a side note we can observe that although the baseline
(green) path shoots out, it finally goes back to the starting
point to form a closed loop when the device resumes its
initial orientation.

Figure 6. Translation only movements; Line, Square, Circle, Spi-
ral, Star and Letters CV paths respectively. Green path refers to
baseline method, white path to proposed method

7. Future work
Some of the possible future work is listed below

1. The algorithm compares 1st (anchor) and Nth frames.
If the device moves such that all key-points of anchor
frame are out of view then this approach fails

2. It only uses key-point matching technique. It doesn’t

4



Figure 7. Translation + Rotation movements; Full rotation, Arc,
Forward + Full rotation along axis perpendicular to device respec-
tively. Green path refers to baseline method, white path to pro-
posed method

take advantage of any alignment techniques like
Lucas-Kanade or Inverse composition alignment

3. It uses a fixed feature detector irrespective of the nature
of the scene.

The first problem can be solved by calculating displace-
ment between consecutive frames. But this can introduce
drift in displacement over time due to the accumulation
of small errors in each such calculation. Some frames
might not have enough good features or contain rapid mo-
tion. Therefore a combination of 1-Nth frame and consecu-
tive frame displacement calculations should be used, where
more weight is given to the former method and the latter
one can be used to correct the later one periodically.

The tracking itself can be improved by extracting im-
age features using algorithms like Shi-Tomasi corner de-
tector and SIFT features and apply tracking algorithms like
Lucas-Kanade tracking to obtain the new positions of these
features and hence calculate displacement and rotation be-
tween frames.

A simple solution to third problem is use all or a selected
subset of detectors running in separate threads and choose
the one with the greatest number of good key-point matches.

As one of the primary use cases of this system is to be
used as an external mouse, occlusions by hand is a common
phenomenon and recovery methods for such scenarios can
be implemented.

As the change in pose is relative we can have a parameter
to adjust so called mouse-sensitivity to adjust the motion of
cursor with respect to actual motion of mobile phone. If

the front camera is used as the input source then the user
has access to the whole screen. Therefore the screen can be
customized to any layout of buttons or operations giving the
user great control and customizability.

8. Conclusion
In this paper starting from a set of assumptions we first

proposed a method to estimate the translation of a mo-
bile phone by comparing features from first and Nth frame.
Then we extended that method to estimate both rotation and
translation simultaneously by estimating euclidean trans-
form. Then we compared both methods in different scenar-
ios to conclude that the second method is as good as first one
in estimating translation and has an additional capability of
estimating rotation. Thes methods have good properties like
no accumulation of drift, jerk recovery, independence from
movement speeds. Although these methods are not fully
at the level to be deployed as human-computer interaction
systems like external mice and CAD tools, they show good
promise for future and encourage us to look at the mobile
computing world in a different perspective.

References
[1] Pablo Fern$#225;ndez Alcantarilla, Adrien Bartoli, and An-

drew J. Davison. Kaze features. In Proceedings of the 12th
European Conference on Computer Vision - Volume Part
VI, ECCV’12, pages 214–227, Berlin, Heidelberg, 2012.
Springer-Verlag.

[2] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares
fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach.
Intell., 9(5):698–700, May 1987.

[3] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc
Van Gool. Speeded-up robust features (surf). Comput. Vis.
Image Underst., 110(3):346–359, June 2008.

[4] Andrew J Davison, Ian D Reid, Nicholas D Molton, and
Olivier Stasse. Monoslam: Real-time single camera slam.
IEEE Transactions on Pattern Analysis & Machine Intelli-
gence, (6):1052–1067, 2007.

[5] Anton Filatov, Artyom Filatov, Kirill Krinkin, Baian Chen,
and Diana Molodan. 2d slam quality evaluation methods.
In Proceedings of the 21st Conference of Open Innovations
Association FRUCT, FRUCT’21, pages 120–126, Helsinki,
Finland, Finland, 2017. FRUCT Oy.

[6] Georg Klein and David Murray. Improving the agility of
keyframe-based SLAM. In Proc. 10th European Conference
on Computer Vision (ECCV’08), pages 802–815, Marseille,
October 2008.

[7] Georg Klein and David Murray. Parallel tracking and map-
ping on a camera phone. In 2009 8th IEEE International
Symposium on Mixed and Augmented Reality, pages 83–86.
IEEE, 2009.

[8] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart.
Brisk: Binary robust invariant scalable keypoints. In Pro-
ceedings of the 2011 International Conference on Computer

5



Vision, ICCV ’11, pages 2548–2555, Washington, DC, USA,
2011. IEEE Computer Society.

[9] Mingyang Li and Anastasios I Mourikis. Vision-aided in-
ertial navigation with rolling-shutter cameras. The Inter-
national Journal of Robotics Research, 33(11):1490–1507,
2014.

[10] David G. Lowe. Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision, 60(2):91–110,
Nov. 2004.

[11] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A
robust and versatile monocular visual-inertial state estimator.
Trans. Rob., 34(4):1004–1020, Aug. 2018.

[12] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. Orb: An efficient alternative to sift or surf. In Pro-
ceedings of the 2011 International Conference on Computer
Vision, ICCV ’11, pages 2564–2571, Washington, DC, USA,
2011. IEEE Computer Society.

[13] Hauke Strasdat, J. M. M. Montiel, and Andrew J. Davison.
Scale drift-aware large scale monocular slam. In In Proceed-
ings of Robotics: Science and Systems, 2010.

[14] Yihong Wu, Fulin Tang, and Heping Li. Image-based camera
localization: an overview. Visual Computing for Industry,
Biomedicine, and Art, 1(1):1–13, 2018.

6


