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Robot: An intelligent machine that can sense and act on the world.
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1 Introduction

Given a differential drive robot with a laser scanner in an static unknown 2D environment,
the goal is to

1. Create a map of the obstacles in the environment leaving no area unexplored.
2. Simultaneously localize and map the landmarks in the environment.
3. Not collide with any obstacles while doing so.

The aspects of the project span a minimal set of features required for sensing in a robot.
The main challenges are,
Correctness: Processing sensory data correctly and handling corner cases
Performance: Processing it fast enough for it to be real-time
Safety: Minimizing probability of a collision in uncertainty
Measurement noise: Making reliable lifelong improving maps in uncertainty

2 Related work

Nunez et al.[7] have laid out the basic steps for identification of landmarks from measure-
ments. Borges et al.[2] have set up the concept of extracting lines from 2D laser range
scanner measurements. We base our landmark detection frame work on on the foundations
laid by these two papers.

3 Simulator

Instead of using ROS/Gazebo (which is heavily bloated for the purpose) or simulator in the
class repository, we use a self-written simulator in ‘Kotlin’. It started out a port of the latter
and therefore it has basic necessities like separate thread for robot, noise in measurements
etc... We use ‘Processing’ as the rendering library, which is essentially a thin wrapper
around OpenGL. This lets us easily make good visualizations quickly while abstracting the
unnecessarily complex OpenGL specifics. We use ‘Kotlin’ because it is terse, statically-typed
and fast enough for the purpose. We use ‘EJML’ as the linear algebra library.

This in-itself was a challenging task and took significant amount of time. It provided
insights in the importance of a single clock, noise addition, control integration, laser sensor
distance calculations, thread management and an overall feel for the system. This made
debugging and visualizing rather easy. Although we wrote our simulator we make sure that
we do not access any state that would otherwise be unavailable in real-world viz. true state
of robot, propagation and measurement noise mean and co-variance etc...

4 Our Approach

Here, we layout the details of all the steps involved in achieving the goals of this project.
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4.1 Estimating Noise Co-variance

We assume that the propagation and measurement noise has zero mean but is initially
unknown. Therefore, we fit a Gaussian curve on the observed noise in each quantity. Since
the Gaussian fit will have 0 mean, we just need to estimate the co-variance. For this, we give
a control for the robot for some time and get its true pose and compare it with estimated
pose to get the propagation noise.

nprop =G PR −G PRt (1)

Similarly we compare the true and estimated landmark position to get the measurement
noise.

nm = zt − CT (GΘR)(GPLi
−G PR) (2)

Note that in this step we assume that we know the true pose of robot and landmark
positions. The equivalent of this in real world is just to use a measuring tape to get them.
The movement is generated by giving random linear and angular velocities. Angular velocity
is always kept positive so that the robot only takes full ellipses and doesn’t move completely
outside the scene. The noise is collected at regular intervals of the movement and once
enough samples have been collected we fit a normal distribution to both positional and laser
measurement noise. The covariance is calculated using the formula,

covx,y =

∑N
i=1(xi − x̄)(yi − ȳ)

N − 1
(3)

In our experiments, we collected around 100 noise samples, on a regular interval of 500
milliseconds. Figure 1 shows the results of the Gaussian fitting over the measurement noise.
Note that it’s a loose fit primarily because the mean is fixed at 0,0 and also because we want
to keep scope for larger noise. It’s better to have more uncertainty than to have less and
then crash.

Figure 1: Covariance Estimation. Red points are the measurement noise. Blue region is the
95% confidence interval of the Gaussian Distribution.
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4.2 Obstacle and Landmark Detection
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Figure 2: Pipeline of obstacle and landmark detection

Figure 2 shows the pipeline of obstacle and landmark detection.

Obstacle vs Landmark An obstacle is a an object in space that the robot likes to avoid
colliding with. A landmark is a point in space that is uniquely identifiable either by a direct
or an inferred measurement. A laser scanner returns a list of distances on each measurement.
A wall is modelled as a line segment. Depending on its resolution, this can be up to a few
hundred distances. Given an estimate pose of the robot each distance maps to a point
in space. But not all of them are uniquely identifiable in this setting. The ones that are
identifiable through this particular sensor are the intersections of walls and loose ends of
walls. Therefore we define only such points to be our landmarks, which we eventually store
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in our SLAM state. Nevertheless we use other points to estimate and keep track of wall
poses. This is an important design decision.

Partitioning using Discontinuity We first partition the list of distances based on dis-
continuities. This lets us identify different groups of walls as a first pre-processing step.

|di − di+1| > ε (4)

Equation 4 describes the criterion for identification of discontinuity, where di and di+1

are two consecutive distance measurements, and ε is tuning parameter which is determined
based upon the noise levels in measurements, and the environment. Upon detection of
N discontinuities, the measurements are split into N+1 partitions of distances. This is
illustrated in Figure 3. A subtlety is that laser sensors have a finite range and can return
invalid values when a laser does not hit anything in that range. This has to be dealt with
properly. Since distances are consecutively taken with a small increment in angle of the
laser, each partition corresponds to a group of walls which shall be further divided in next
step.

Figure 3: Partitions based on discontinuity and iterative end point method. A set of points
of same color represent a partition
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Partitioning using IEP If RANSAC were to be performed such partition the threshold
value need to be big which in-turn increases the uncertainty of the wall poses. We leverage the
constraint that each partition can correspond to a group of walls connected serially. We use
Iterative End Point Fitting [10] to try to find as many end points of such serially connected
walls. Using these endpoint we further partition each partition into second level partitions.
This significantly reduces the uncertainty and increases the stability of identification of the
individual walls and their intersections. This is illustrated in Figure 3. The pseudo-code for
the algorithm is presented in Algorithm 1.

Line fitting using RANSAC and Least Squares We have a set of partitions after
second level partitioning using IEP. For each partition we perform RANSAC [5] to fit a
line. With the remaining points in the partition we fit another line and repeat this until
there are no more enough points left. Each partition thus yields a set of lines each having
a set of points as inliers. We use least squares line fitting [1] to improve the fit given by
RANSAC. The advantage of IEP is further illustrated here because most of the second level
partitions shall yield a single line, thus the RANSAC threshold can be quite low. The order
of distances in each partition is still preserved. Therefore each line output by least squares
fitting is clipped using projection of end points of each partition on the line itself. This is
illustrated by the pink lines in the Figure 4.

Landmark Detection The landmarks are defined as loose ends of walls or intersection of
walls. The loose ends are found just after first level partitioning using discontinuity. However
there are some subtleties. An end point of first level partition is a landmark unless until

1. It corresponds to the first/last laser of sensor, since we can not sense beyond these.
2. It’s corresponding distance is very close maximum laser distance.
3. If the distance corresponding to neighbour laser not in partition is less than its own.
4. The number of points in the partition it is less than a minimum threshold.

Iterative end point method returns end points of serially connected walls. These points
excluding the first and last are counted as landmarks unless, the wall corresponding to them
is too small or adjacent walls ends are more than a certain threshold apart. These are
illustrated by the cyan circles in Figure 4

4.3 Simultaneous Localization and Mapping

We assume noise in the control and measurements. If this noise is left unchecked, it will
accumulate leading to a large gap b/w estimated and true states. ‘Simultaneous localization
and mapping’ [4][9] using Kalman Filter is a way to simultaneously estimate both robot pose
and landmark positions. It has three steps namely propagation, augment and update.

Measurement model The measurements we receive from the laser scanner are defined
by the Equation 5.

z = CT (GΘR)(GPLi
−G PR) +m (5)
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Algorithm 1: Iterative End Point Fitting

Function IterativeEndPointFitting(PointList[], ε):
dmax ← 0
index ← 0
end ← length(PointList)
i ← 2
while i < end do

d ← perpendicularDist(PointList[i], Line(PointList[i], PointList[end]))
if d > dmax then

index ← i
dmax ← d

end
i++

end
ResultList ← []
if dmax > ε then

recResults1[] ←IterativeEndPointFitting(PointList[1:index], ε)
recResults2[] ← IterativeEndPointFitting(PointList[index:end], ε)
ResultList[] ← {recResults1[1:-1],recResults2[1:]}

else
ResultList[] ← {PointList[1], PointList[end]}

end

return ResultList

Propagate step We use the fourth order RK-4 [8] approximation of differential drive
dynamics to propagate the robot’s state through time. This proves to be good enough for
our purpose. Equations 6-9 describe the slam propagate step mathematically, here g(x(t), u)
refers to the mathematical model for differential drive dynamics. x(t) and Σx refer to the
mean and co-variance of the distribution that contains the robot’s position.

g(x(t), u) =

(ν + ην)cos(θt)
(ν + ην)sin(θt)

(ω + ηω)

 (6)

k =


g(x(t), u)
g(x2, u)
g(x3, u)
g(x4, u)

x =


x(t)

x(t) + ∆t

2
k1

x(t) + ∆t

2
k2

x(t) + ∆tk3

 (7)

x(t+ ∆t) = x(t) + ∆t

6
(k1 + 2k2 + 2k3 + k4)

Σx(t+ ∆t) = Σx − ΣxH
TS−1HΣx

(8)

S = HΣxH
T +MΣmM

T

K = ΣxH
TS−1 (9)
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Figure 4: Obstacle and landmark detection. Pink lines are detected obstacles, Cyan circles
are detected landmarks

Augment and Update step We use the Mahalanobis Distance for each measurement as a
metric of novelty. We consider a measurement to have matched with an existing landmark if
their Mahalanobis distance is less than 20 units, augment the state with a new measurement if
it’s Mahalanobis distance to any other measurement is greater 200 units. Any measurements
that do not conform to either category are discarded. Augments are done only after all
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updates are performed for a batch of measurements.

x̂+(t) = x̂(t) +K(Z − h(x̂, 0))
Σ+
x(t) = (I −KH)Σx(t)(I −KH)T +KMΣm(t)MTKT (10)

Periodic Bad Landmark Culling The landmark detection algorithm is designed to only
detect intersections of walls and loose ends of walls. However a few measurements that are
neither slip past over time due to manual threshold. There measurements are added to the
state. They are not useful and increase the size of estimate of the state and co-variance
unnecessarily which slows down computation. To mitigate this we periodically check for bad
landmarks and remove their blocks from state estimate and co-variance. For each landmark
the number of updates it receives is kept track of. A landmark is considered bad if its updates
are less than a threshold. This makes it harder for the state from becoming intractably large.

The SLAM state is illustrated in Figure 5. The uncertainty in the estimates is quite
small because they are measured at the start of simulation.

Figure 5: Landmarks from slam state. Red ellipses represent estimate and co-variance of
landmark states

4.4 Path Planning

Obstacle Map To move the robot from a start pose to goal pose without colliding with
obstacles, they need to be kept track of. The pipeline of obstacle and landmark detection
in Figure 2 only outputs obstacles but does not keep track of them. For that we use a
simple data structure called Hit grid. We imagine a rectangular boundary on the size of the
environment or the subset of environment of interest. This can be an conservative upper
bound that covers the region of interest well enough. Then we divide that rectangle into a lot
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of small cells essentially creating a grid on the region of interest. Each cell has a counter which
counts number of laser end it received and the number of inferred obstacle measurements
passed through it. The number of hits it received is proportional to the probability of that
cell containing an obstacle. As we receive more and more measurements this information is
collected and kept track of over time essentially creating an obstacle map. A subtlety here
is that we have to take the extent of the agent into account. As our robot is essentially a
circle, for every cell that receives a hit we increase the counter of cells around it under a
distance of the agents radius. This way we can just plan for the center of the agent in the
next steps. This is illustrated in Figure 6.

Figure 6: Layout, Detected obstacles and landmarks, Lasers and Hit grid respectfully. The
red regions in fourth sub-figure indicate obstacles with radius of robot taken into account.

Path Planning/Replanning The hit grid itself can be seen as an 8-connected graph with
centers of cells being vertices and each vertex connected to at most eight vertices on its sides
and diagonals. Therefore given an start cell and goal cell, we can use a graph search method
to find a path. We use A* for the search and distance from center of a cell to center of
goal cell as an admissible heuristic. This significantly decreases the search time compared to
other search methods like BFS, UCS while still yielding optimal paths. But A* works for a
static known environment, whereas we have an unknown environment. We use the essence
of D*-Lite algorithm [6] which is to replan our path once we detect an obstacle it. This
simple addition deals with changing obstacle map over time. This is illustrated in Figure 7.
A subtlety here is that our robot can not move perpendicular to its orientation. Therefore
we at every vertex on the path we first orient the robot to next vertex and then translate it.
This control strategy is simple and works well for our purpose.

Trajectory Optimization Although the previous setting deals with changes in obstacle
map, the paths produced are only optimal in the discretized 8-connected graph space. For
example in the first sub-figure of Figure 8 the robot can directly go towards the opening
on the right instead of following all the vertices in between. Further more by following all
vertices we have to orient the robot many times unnecessarily. This can be pruned using a
simple rule. After reaching a vertex on the path we choose the furthest vertex on the path
for which the line segment connecting from current cell to that vertex has no obstacles on it
as our next local goal. This guarantees no collision and significantly reduces the number of
maneuvers. A subtlety here is that we only keep track of obstacles per hit grid cell. So we
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Figure 7: Path planning/re-planning. The goal is just outside the right wall. Cyan shows
the planned path. On the left is the planned initially path. On the right is the re-planned
path, when obstacle is detected in the original path.

approximate the line segment connecting current cell and a vertex on path using a set of hit
grid cells that intersect with it. Therefore it finally boils down to a line rendering problem
on a pixelated space, which is well-known and a fundamental problem in computer graphics.
We use the well known Bresenham algorithm [3] for this. The second and third sub-figures
of Figure 7 illustrates the optimized trajectory (blue) over planner trajectory (cyan).

4.5 Exploration

To explore all of the region of interest first we keep track of seen region. For this we use
a separate instance of hit grid called sense grid. A sense grid cell is seen if a laser has
intersected it at least once. The Bresenham algorithm is used to detect cell line intersection.
This is illustrated in Figure 9.

5 Simulations

We use the parameters described in Table 5 for our simulator. We did not assume a limit
on maximum linear and angular accelerations i.e. a new control is applied instantaneously
in the robot. The error in control is multiplicative and error in laser scanner is additive. We
assume zero uncertainty in robot pose at the start of simulation. We tested our robot in
simple rectangle, simple block and apartment scenes. In all of the scenes we gave the robot a
goal to reach. We used discontinuity thresholds of 100, 200, 100 respectively for the scenes.
We used conservative offset while building obstacle maps to decrease the probability of
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Figure 8: Trajectory optimization. The cyan path is the planned trajectory. The cyan circle
is invariantly the vertex the robot is directly going towards. The blue path is the optimized
trajectory.

Figure 9: Keeping track of seen region. Blue area represents seen region.
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Parameter Value
Robot dt 0.01
Robot loop duration 16.67 ms
Control update 1 per 1 loop
Measurement 1 per 10 loops
Linear control error limit 0.1
Angular control error limit 0.1
Angle range of laser scanner -π to +π
Number of lasers 181
Max laser distance 500
Laser distance error limit 1
Laser angle error limit 0.05
RANSAC threshold 4
RANSAC iterations 1000
Minimum inliers for line 8

Table 1: Simulator parameters

collision. We compared obstacle and landmark detection with and without iterative endpoint
partitioning and with and without least squares fitting.

6 Results and analysis

The robot was able to reach the goals in both simple rectangle and apartment scenes without
collision while updating an obstacle map, seen region map and detecting landmarks and
correcting its pose. Some moments of simulation are in Figure 10.

Figure 10: Keeping track of seen region. Blue area represents seen region.

The iterative end point method made the obstacle landmark detection pipeline much
more robust as illustrated in Figure 11.

The least squares fitting made the obstacle detection much more stable. The periodic bad
landmark culling proved efficient at removing bad measurements periodically as illustrated
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Figure 11: Left: RANSAC on first level partions, Right: RANSAC on second level partitions
using IEP. Note the false positive that occurred in first sub-figure because of the point on
right being included in the line of left.

Figure 12: Left: A bad landmark is detected, Right: Bad landmark is culled based on the
check that number of updates it received was less than a threshold.
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in Figure 12.
The hit grid worked well for detecting and keeping track of obstacles, path planning/re-

planning. The trajectory optimization decreased the time of travel significantly. The sense
grid worked well for keeping track of seen region. All the simulations were close to 60 frame
per second most of time indicating the real-time performance of the pipeline.

The most problematic scene was the simple block, due to its lack of landmarks as per
our definition. There was significant drift of the robot which resulted in wrong updates of
obstacle map and finally the goal position was estimated to be inside an obstacle. This
serves as a control and proves that the robot in fact uses the landmarks in landmark rich
apartment scene to improves its estimate regularly. In order to handle such scenes with
sparse landmarks more features of environment such as parallel walls can be leveraged. But
such context specific navigation was not a goal of our project.

Furthermore we observed that high values of control, especially ω drastically affects the
obstacle and landmark detection due to the low rate of measurement compared to control
updates. Slow movements with and frequent revisiting of landmarks with less uncertainty
improved the estimates of both robot pose and landmarks with high uncertainty. It is
important especially at the start when the uncertainty is at its minimum, to move slowly
and make many updates of immediately visible landmarks for an effective and sustained
estimation.

7 Conclusion

Our initial goal was, given a differential drive robot with a laser scanner in an static unknown
2D environment, the goal is to

1. Create a map of the obstacles in the environment leaving no area unexplored.
2. Simultaneously localize and map the landmarks in the environment.
3. Not collide with any obstacles while doing so.

We managed to achieve all of our goals except the active unseen area exploration due to
time constraints. After keeping track of seen region, by randomly sampling goal positions
in the largest unseen areas one can explore all of the accessible region of interest. This is a
good direction for further refinements.

The most challenging parts were
1. To define and distinguish what a landmark is and what an obstacle is.
2. To extract obstacle and landmarks from laser scans in a robust and stable manner.
3. To cull bad landmarks from SLAM state.
4. Keep track of obstacles, plan and replan paths to goals taking agent of extent into

account.
5. Finding intersections of a line and hit grid cells.
6. Making optimizations along the way to keep the system real-time.

However this approach makes some assumptions. Mainly we assume that obstacles are
only polygons and environment has well-spread landmarks. If either of the assumption breaks
our system cannot guarantee minimized collision which is well illustrated in our simple block
demo. If the resolution of hit grid is low there can be a lot of false positives cutting off agent
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from regions which are in reality accessible. If the region of interest is very large then the
size of hit grid can become intractable where one might need to use sparse implementations.

8 Work division

Yashasvi Sriram Patkuri IEP, RANSAC, LS integration, Hit Grid, Planning/Replanning,
Trajectory Optimization

Prashanth Kurella Implemented measurement partitioning and line segment extraction
using IEP and RANSAC

Mandakinee Singh Patel Landmark detection, Bresenham implementation, Sense Grid

Abhinav Mehta Implemented the script for uncertainty calculation and Gaussian fitting
over variable noise distribution.
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