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Abstract

The problem of motion planning for wall-climbing two arm agent is considered in
this work. It is modeled in two different ways; using a 4R chain agent and a 2×2R tree
of chains agent. Along with planning to reach the finish hold there is also an effort to
make the motion as natural as possible using simple heuristics. Using constraints on q
and ∆q and center of mass control achieves significantly better natural motion. Local
minima poses are avoided by using random-sample based globally-optimal inverse-
kinematics solves. These coupled with gradient descent make the agent reach snap to
holds reliably. By switching pivots and matching hands the agent can easily navigate
a given climbing route. The neck goal for 2× 2R agent is predicted by a cross-entropy
optimized fully connected network. The full policy is also visualized nicely. Using
these methods both models achieve reliable and natural motion to reach finish holds.
Moreover these methods can be applied generally to any tree of chains agent, including
a full two arm, two leg human-like agent.

1 introduction

The problem considered in this work is the task of wall climbing by stick-figure agents. The
goals are

1. To model human-like motion using simple heuristics.
2. To generate a controller for a given agent so that it reaches the finish hold.

All motion, environment and agents are in 2D.

1.1 NR chain agent

Define NR chain agent as serially connected N links using revolute joints. One end of the
chain is a pivot, while the other end is free. Such an agent has N links, N + 1 vertices and N
joint angles (qis). The controls are the angles at each joint. Figure 1 shows examples of such
agents. These are used to model individual limbs. A q assignment of a 2R agent is show in
figure 2

Figure 1: 1R, 2R, 3R agents.

1.2 Tree of NR chains agent

Multiple NR chain agents can be joined end-to-end to form a tree. The ends where joining
occurs cannot be used as a pivot. At any point of time exactly one pivot. For a (parent,
child) NR chain pair, we assume that the point of joining is controlled by the parent agent.
The child agent uses the point of joining as it’s pivot. Figure 3 shows examples of such
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Figure 2: q or θ assignment for a 2R agent.

agents. Such a 2×2R agent is used to model two arms or two legs. The difference between a
4R agent and a 2×2R agent is that the latter can be controlled hierarchically. Thus multiple
elements can be composed without much agent specific math. The methods discussed in this
work are implemented for 2 × 2R agent modeling two arms, but are mostly applicable for
any Tree of NR chains agent.

Figure 3: 2× 2R, 3× 2R agents.

1.3 Environment

A 2D wall with holds is the environment. A free end can reach a hold and can use it as a
pivot. In that case the existing pivot becomes a free end to maintain the invariant of exactly
one pivot. An example is shown is figure 4.

1.4 Motivation and broader use

Firstly it is quite fun to watch robots climb walls. But also by solving this problem one
can find solutions for new and potentially dangerous bouldering problems. If implemented
in real robots, they can be used to climb difficult and challenging terrain for reconnaissance
or rescue missions. In terms of animation, most games use fixed climb cycles. This method
can be used to improve climbing character animation.
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Figure 4: Wall environment. Dots are holds. Red dot is start hold. Green dot is finish hold.

2 related work

In general the problem of motion planning for wall-climbing is not as explored as other
tasks like running, jumping, dribbling and even swimming. [Bull et al., 1995] propose wall
climbing robot gait control using genetic algorithms and Q-learning. [Grieco et al., 1998]
and [Nagakubo and Hirose, 1994] demonstrate real life wall-climbing robots. The dynamics
of their robot are similar to agents considered in this work. [Kalisiak and Van de Panne,
2001] is one of the first papers to work on animating 2D parkour agents involving swinging,
climbing and crawling. They propose a kinematic motion planning algorithm based on
stochastic search procedures guided by geometric constraints. This work also uses random
sampling to solve for globally optimal inverse kinematics. [Naderi et al., 2017] addresses the
problem of offline path and movement planning for wall climbing humanoid agents. [Peng
et al., 2017] uses the idea of hierarchical controller generation for the tasks of walking,
running, jogging, dribbling etc. This idea of hierarchical control is used in this work. A
neural network is used to plan goals for a lower level inverse kinematics solver.

2.1 Baseline

Baseline is chosen as my previous work on this problem. The source code, demo and re-
port can be found at https://github.com/buggedbit/stick-solo. The baseline considers
similar NR chain agents but it

1. Has no constraints on qi and ∆qi.
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2. Has no center of mass considerations.
3. Has no multi-limb coordination.
4. Mainly uses gradient descent on loss function. ∆q ≡ − δ(goal−end)2

δq

One of the main problems of the baseline, more specifically the gradient descent, is the
possibility of local minima. Combined with no constraints on qi and ∆qi, modeling limbs
using these agents this produces weird poses and transformations between poses. These
issues are addressed in this work.

2.2 Oracle

There are two components of evaluation in this problem.
1. Reaching the goal.
2. Moving in a human-like way.

While the first one can be evaluated automatically, the latter one is best evaluated using
user-studies.

2.3 Contribution

The main contribution of this work over baseline is to
1. Add constraints on qi and ∆qi.
2. Add center of mass terms to the loss function to model natural human motion.
3. Develop arbitrarily close globally optimal solves for NR chain agents.
4. Formulating and implementing the control of 2×NR as an RL problem.

3 approach

In this section the approach is incrementally presented.

3.1 Constraints on qi and ∆qi

For each join of the agent two constraints; one on its value and one on its rate of change
is implemented. Any rate of change of magnitude more than certain threshold is clamped.
Similarly if a change in joint angle makes its magnitude more than a certain threshold then
the angle is clamped.

3.2 Gradient descent on center of mass

Baseline uses gradient descent on the following loss function.

L ≡ (goal − end)2

So an update on qis would be

∆q ≡ −δL

δq
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But this does not explicitly model any nature of motion, and therefore there are no preferred
joint angles. To make the motion more natural, the most basic thing to simulate is gravity.
Since simulating forces and torques on each link and interaction forces b/w all pairs of
touching links would be cumbersome, we simulate its effect on the center of mass of the
whole agent. We try to bring the center of mass of the whole body down and towards the
midpoint of current pivot and current goal. Therefore the loss function becomes

L ≡ α ∗ (goal − end)2 + β ∗ (comx − (goalx − pivotx)/2)
2 + γcomy

where α, β, γ are tunable constants. Higher values of α models stronger agents, while lower
values model weaker agents. Now the update becomes

∆q ≡ −δL

δq
≡ −α

δ(goal − end)2

δq
− β

δ(comx − (goalx − pivotx)/2)
2

δq
− γ

δcomy

δq

The first term is already calculated in the baseline. The other terms can be easily calculated
once

δcomx

δq
,
δcomy

δq

are known.

Consider
δcomx

δq

Assuming same mass for all links and given x-coordinates of vertices of NR chain

x0, x1, ...xn

The x-coordinate center of mass of each link will be at its center

ci ≡ (xi + xi+1)/2; i = 0, 1, ...n− 1

Therefore x-coordinate of center of mass of entire agent is

comx ≡ x0/2 + x1 + x2 + ...+ xn−1 + xn/2

But from the dynamics of NR chain we know that

xi ≡
n∑

i=1

licos(
i∑

j=1

qj)

yi ≡
n∑

i=1

lisin(
i∑

j=1

qj)

Thus we have formulated comx in terms of qis, which makes calculating

δcomx

δq

feasible. The calculation of
δcomy

δq

follows the same arguments. The effect of this term is illustrated in figure 5.
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Figure 5: Left agent has no com control, therefore stays in a tilted position. Right agent has
com control, therefore swings downward.

Notes In practice we found it better to have more discounted com control for links farther
from pivot since it is natural for them to be more responsible about reaching the goal rather
than maintaining com position. Also observe that the goal for x-coordinate for center of mass
can be changed with very little change in math. For both terms the gradient becomes zero
at both local minima and local maxima. Ideally the local maxima case should be handled
explicitly. But since it is an unstable equilibrium and there is almost always a perturbation
from some other control (like from the first term). Therefore it is very rare for the agent to
be stuck at local maxima and hence handling it explicitly is not needed in practice.

Time complexity Computing these terms has O(n3) time complexity when done in a
brute force way. But due to the repeated summations it is actually possible prune some
computations by maintaining total sums and subtracting from them. This approach has
O(n2) time complexity, which is the one implemented in the code. But since for the purposes
of this work we are considering single NR agents with small N, it does not make much
difference. However if work-like agent (NR chain with large N) or large crowds of climbing
agents are simulated then this can make a significant difference.

3.3 Globally optimal inverse kinematics solves

Gradient descent with constraints can cause agents getting stuck at local minima poses. This
is illustrated in figure 6. Even though this can be mitigated a bit with parameter tuning it
is still an intrinsic and major problem. To solve this we need a globally optimal solve for
inverse kinematics under constraints. But there is no generalized inverse kinematics solve
for NR chain agents for N > 2 yet. To solve this we can soften the requirement to solve for
arbitrarily close globally optimal solves.

3.4 No prior random sample solve

From the spirit of RANSAC, this is a simple method based on randomization. Given a
goal, randomly sample qs (in their ranges) and keep the track of q∗ which achieves closest
approach. This can be stopped after a fixed number of samples or if closest approach is
less than a threshold. This at limit should not be stuck at local minima and therefore is a
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Figure 6: Top 3 one motion, Bottom 3 one motion. Agent crosses arms to get stuck in a
local minima pose.

arbitrarily near optimal solve. Given q∗ just interpolate from current q to q∗ to reach the
goal. Since the distance calculation part is independent for each randomly sampled q, that
part of the algorithm is parallelizeable. Since the actual function which ranks sampled qs
can be arbitrary, we can actually use this to optimize more compound loss functions. For
example in the implementation

L ≡ α ∗ (goal − end)2 + β ∗ (comx − (goalx − pivotx)/2)
2 + γcomy

is globally optimized.

3.5 Current state random sample solve

From the spirit of genetic algorithms, this is a simple method based on randomization, similar
to no prior random sample solve. Instead of sampling qs randomly in whole range, we sample
in small region around current q, set the best q∗ as the new q and repeat. This method is
more prone to local minima than previous method but given enough big sampling vicinity
local minima can be avoided. Therefore this is asymptotically equivalent to no prior random
sample solve. On the other hand this method is faster than the former, especially when
number of dimensions of q space is large, since it only samples in a small vicinity around
current q. Therefore this method scales better with q dimension and/or number of agents.

3.6 Integration with gradient descent

Both of the above solves are implemented and presented in the demo. But even with the
globally optimal solve, most of the times, we do not exactly reach global minima but shall
be in a close but unknown vicinity of it, depending on number of samples and dimension of
q space. Since for continuing on a wall we need to actually get to a specified distance from
the goal, we cannot just rely on these globally optimal solves. Therefore we first use globally
optimal control to get within a close vicinity of global minima and then switch to gradient
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descent for ensuring reaching the goal. In practice we found that

α ∗ cglobal + β ∗ cgradient descent;α =
1

(1 + ticks)0.5
, β = 1− α

works well for our demos; where ticks is the number of ticks completed from initial pose
where globally optimal solve q was calculated. Using these methods the agents were able to
avoid getting stuck in local minima poses.

3.7 Switching pivot

When the goal is reached by a free end, then the agent has to switch pivot. Switching pivot
is essentially changing the pivot position, order of lengths of links, qis and qiclamps. When
pivot is switched

1. Pivot position is the previous end position.
2. Order of lengths of links are reversed.
3. From the dynamics qnew = [

∑n
i=1 qi − π,−qn−1, ...,−q1].

4. From the dynamics qnewclamps = [...(−qimax,−qimin)]; i = 1, 2, ..., n.
We can see from points 3 and 4 that the first q is in general not bounded. Therefore the
q1clamps have to be (−∞,∞). This means that we cannot enforce constraints on first joint
angle if we want to switch pivot generally. This becomes a problem when one goal is high
up the pivot and the next goal is low below the pivot, in which case agent tends to make
unnatural cartwheeling motion. This is illustrated in figure 7. This can be solved by only

Figure 7: Left hand pivoting agent makes a cartwheel in attempt to reach the goal, because
constraints cannot be enforced on q1.

sampling certain range of q1 values while performing globally optimal solves.

3.8 Matching hands

This alternating hand + switching pivot method does not always work as illustrated in figure
8. This can be resolved by matching hands.

1. If agent is reaching with left hand but goal on on right of pivot, set goal as pivot.
2. If agent is reaching with right hand but goal on on left of pivot, set goal as pivot.

This is illustrated in figure 9

3.9 Formulating 2× 2R limb coordination as an RL problem

Consider 2× 2R agent. We model a pair of arms using this agent. Since (global + gradient
descent) inverse kinematics planners for individual arm (modeled using 2R chain agent) are
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Figure 8: Switching pivots for alternating hands results in local minima pose.

Figure 9: Switching pivots + matching hands avoids local minima pose.

already in place, we now just plan for the goals of ends of each 2R chain agent. Again since
given a climbing route the goal of non-holding NR chain is determined, the only real variable
here is the holding arm goal (i.e. where the neck should go). Since it is not very trivial as
to where the neck should be placed, given a hand goal it is better to use a good function
approximator like neural network for this task. We model this policy as a neural network
optimized using cross-entropy method.

Input/Output design Since the lower level IK planners take care of current q state, q and
qclamps need not be part of input. It should only depend on current pivot, lengths of links
and current goal. Due to this the policy becomes a discrete control (instead of continuous
control) sampled at every pivot switch. This hugely decreases the burden on the network and
really only outsources the most proper work to the network viz. holding arm goal prediction.
This is reflected in the training where good results are achieved in relatively small training
times. Further more, now in order to test the network we just need to check the predictions
for goal positions, instead of pair of start and goal positions. Finally to make the system
pivot shift and scale invariant we choose input as a concatenated vector of lengths of holding
arm and non-holding arm and goal relative to pivot all of them scaled by sum of all lengths
of links. The output is a two dimensional vector specifying the neck goal. After a prediction
is made we scale back and shift the output before further use.

Reward function design The reward function has multiple components. During episode
we have

1. Distance of holding arm end to its goal.
2. Distance of non-holding arm end to its goal.
3. Value of comy.
4. Distance of comx from its goal.

Since the input is scaled and shifted the rewards can be directly applied without any more
pre-processing. The weights of distance from goal are generally more than those for com.
Since we are using raw value of comy as a reward, we need to make sure that we sample
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key value
generations 500
batch size 50

num episodes 20
num episode ticks 200

elite frac 0.25
initial std 1.0
noise factor 1.0

Table 1: Cross entropy optimizer parameters.

many goals in the training area for each model, or else some good model can be thrown out
for being unfairly tested just on high lying goals. After the episode we have

1. High reward for distance of holding arm end to its goal being small.
2. High reward for distance of non-holding arm end to its goal being small.

These rewards ensure the arm reaching the hold.

Network design The network used is simple fully connected network with two hidden
layers of ReLU activation each with 16 nodes. Since the problem given to the network is
quite simple a small network generally suffices. We have also tried Sigmoid activations but
that did not work as well.

CEO parameters Table 1 shows cross entropy optimizer parameters used. It is paral-
lelized on CPU cores and achieves a speedup of 36% on 8 cores for the parameters given in
the table as illustrated in 10.

Left and right holding networks Since the cases where the agent holds the pivot using
left hand and right hand can be treated as separate problems, we train two networks, one
of each case. These are called Left and right holding networks. This further reduces the
training time and achieves differing dexterous behavior.

Policy visualization Our design of input/output is such that for a given agent (the
lengths are fixed) the policy is a mapping from R2 → R2 (non-holding goal to holding goal).
Because of this low dimensionality the policy can be visualized well. The figures 11, 12, 13
visualize left holding network. The figures 14, 15, 16 visualize right holding network. These
visualizations helped a lot in the design and debugging of reward function, optimizer and
the network.

4 experiments and results

We first model two arms using a 4R agent controlled by
1. Vanilla gradient descent.
2. Gradient descent + relaxation on every hold.
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Figure 10: Speedup of cross entropy optimization using CPU parallelization.

Figure 11: For the left holding network, distance of neck goal w.r.t hand goal. Left side shows
zoomed out graph, right side shows zoomed in graph. Notice the valley of good predictions
among the hills of random noise.

3. No prior random sampling solve + gradient descent.
4. Current state random sampling solve + gradient descent.
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Figure 12: For the left holding network, direction of neck goal w.r.t. hand goal.

Figure 13: For the left holding network, texture distortion map. On the left side is the
original texture, on the right is the mapped texture. Notice the smooth predictions in the
trained region (right) and noisy predictions in the untrained region (left). Pivot is in the
center.

All of these are tested on the same sophisticated climbing route involving left/right, up/down
and diagonal moves. The standard route is shown in figure 17.

1. Vanilla gradient descent is simple but quickly gets stuck in local minima pose and
cannot proceed.

2. Gradient descent + relaxation on every hold performs a little better but tuning the
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Figure 14: For the right holding network, distance of neck goal w.r.t hand goal. Left side
shows zoomed out graph, right side shows zoomed in graph. Notice the valley of good
predictions among the hills of random noise.

Figure 15: For the right holding network, direction of neck goal w.r.t. hand goal.

relaxation time is difficult and agent still generally gets stuck. Also using this method
the agent reaches goal terribly slowly due to all the relaxation.

3. No prior random sampling solve + gradient descent does not get stuck in local minima,
is decently fast and makes the agent reach the final hold pretty consistently.

4. Current state random sampling solve + gradient descent is also decently fast and makes
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Figure 16: For the right holding network, texture distortion map. On the left side is the
original texture, on the right is the mapped texture. Notice the smooth predictions in the
trained region (left) and noisy predictions in the untrained region (right). Pivot is in the
center.

Figure 17: Standard climbing route: grey points represent holds, edges represent path.
Route: left circle counter clockwise, right circle clockwise and then square in clockwise.

the agent reach the final hold pretty consistently. For this method the vicinity region
parameter has to be tuned to avoid local minima poses.

We then model two arms using a 2R agent controlled by cross-entropy optimized network.
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It is also tested on the same climbing route. This agent is also quite fast and finishes the
route pretty consistently. This demonstrates the aspect of multi-limb coordination. Please
refer to supplementary video for demonstration.

All the random global solves use randomness at their core and therefore produce different
motion for same condition on each run.

Comparison to baseline
1. Baseline has no constraints on qi and ∆qi. The current version has them.
2. Baseline has no explicit center of mass considerations. The current version has tunable

center of mass control.
3. Baseline has no multi-limb coordination. The current version uses RL for that.
4. Baseline mainly uses gradient descent on loss function. The current version mainly

uses globally optimal solves with gradient descent just for snapping on to a hold once
close enough, thus avoiding local minina poses.

5 conclusion

We started out with the goal
1. To model human-like motion using simple heuristics.
2. To generate a controller for a given agent so that it reaches the finish hold.

Using the simple center of mass control we were able to make the motion significantly more
natural looking. The near globally optimal random sample solves + gradient descent provides
good planning stack for inverse kinematics level by avoiding local minima poses and preferring
joint angles or enforcing joint angle constraints. The cross-entropy optimized neural network
makes a good higher level planner which guides the lower level IK planner.

Biases There are no datasets involved in this work. No simulator was used for this work
hence any heuristics used are entirely based on our judgment. There heuristics may fail
completely (although unlikely) in a simulator or real world. Moreover energy of the agent is
limited either as a robot or a human, but this is not modeled in this work.

Limitations Modeling human motion is done only using the center of mass control. Tuning
for this is a cumbersome and difficult process and still does not guarantee avoiding weird
poses. To resolve this a good physical simulator can be used on which these algorithms can
be developed further. Even after globally optimal solves there is no guarantee that agent
reaches the hold in a given amount of time since gradients vanish near local minima. This
was the case with some runs of the best models. This is a problem for time critical missions.
To resolve this problem one could scale gradients in a better task specific way. Since this
work did not use a simulator, there might also be additional challenges in controlling an
agent in a simulator or a real world, like torque limits, precision of motors, friction, air drag,
noise etc.
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Future work Although the methods in this work are shown for a 2 × 2R agent, they
can be easily extrapolated to any Tree of NR chains agent, which includes a full human-lik
stick figure agent. The current work does not deal with multiple simultaneous pivots which
are essential in actual climbing, where climbers generally uses two holds to hang. These
problems would be a good follow-up work.
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